skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Allen, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The use of fiber-optic sensing systems in seismology has exploded in the past decade. Despite an ever-growing library of ground-breaking studies, questions remain about the potential of fiber-optic sensing technologies as tools for advancing if not revolutionizing earthquake-hazards-related research, monitoring, and early warning systems. A working group convened to explore these topics; we comprehensively examined the application of fiber optics in various aspects of earthquake hazards, encompassing earthquake source processes, crustal imaging, data archiving, and technological challenges. There is great potential for fiber-optic systems to advance earthquake monitoring and understanding, but to fully unlock their capabilities requires continued progress in key areas of research and development, including instrument testing and validation, increased dynamic range for applications focused on larger earthquakes, and continued improvement in subsurface and source imaging methods. A key current stumbling block results from the lack of clear data archiving requirements, and we propose an initial strategy that balances data volume requirements with preserving key data for a broad range of future studies. In addition, we demonstrate the potential for fiber-optic sensing to impact monitoring efforts by documenting the data completeness in a number of long-term experiments. Finally, we outline the features of a instrument testing facility that would enable progress toward reliable and standardized distributed acoustic sensing data. Overcoming these current obstacles would facilitate progress in fiber-optic sensing and unlock its potential application to a broad range of earthquake hazard problems. 
    more » « less
    Free, publicly-accessible full text available November 7, 2026
  2. In the Upper Colorado River Basin, agriculture is a major contributor to Utah’s economy, which may be stressed due to the changing climate. In this study, two data-mining techniques and interview data are used to explore how climate variability affects agricultural production and the way the farmers have been adapting their practices to these changes. In the first part of the study, we used multilinear regression and random forest regression to understand the relationship between climate and agricultural production using temperature, precipitation, water availability, hay production, and cattle herd size. The quantitative results showed weak relations among variables. In the second part of the study, we interviewed ranchers to fill the gaps in the quantitative analysis. Over the 35 years (1981–2015), the quantitative analysis shows that temperature has affected cattle and hay production more than precipitation. Among non-climatic variables, resource availability and commodity prices are the most important factors that influence year-to-year production. Farmers are well-aware of these effects and have adapted accordingly. They have changed irrigation practices, cropping patterns, and are experimenting to produce a hybrid species of cattle, that are resilient to a hotter temperature and can use a wider variety of forage. 
    more » « less
  3. Abstract The double photoionization of a molecule by one photon ejects two electrons and typically creates an unstable dication. Observing the subsequent fragmentation products in coincidence can reveal a surprisingly detailed picture of the dynamics. Determining the time evolution and quantum mechanical states involved leads to deeper understanding of molecular dynamics. Here in a combined experimental and theoretical study, we unambiguously separate the sequential breakup via D +  + OD + intermediates, from other processes leading to the same D +  + D +  + O final products of double ionization of water by a single photon. Moreover, we experimentally identify, separate, and follow step by step, two pathways involving the b  1 Σ + and a 1 Δ electronic states of the intermediate OD + ion. Our classical trajectory calculations on the relevant potential energy surfaces reproduce well the measured data and, combined with the experiment, enable the determination of the internal energy and angular momentum distribution of the OD + intermediate. 
    more » « less
  4. Abstract We present state-selective measurements on the N H 2 + + H + and NH + + H + + H dissociation channels following single-photon double ionization at 61.5 eV of neutral NH 3 , where the two photoelectrons and two cations are measured in coincidence using 3D momentum imaging. Three dication electronic states are identified to contribute to the N H 2 + + H + dissociation channel, where the excitation in one of the three states undergoes intersystem crossing prior to dissociation, producing a cold N H 2 + fragment. In contrast, the other two states directly dissociate, producing a ro-vibrationally excited N H 2 + fragment with roughly 1 eV of internal energy. The NH + + H + + H channel is fed by direct dissociation from three intermediate dication states, one of which is shared with the N H 2 + + H + channel. We find evidence of autoionization contributing to each of the double ionization channels. The distributions of the relative emission angle between the two photoelectrons, as well as the relative angle between the recoil axis of the molecular breakup and the polarization vector of the ionizing field, are also presented to provide insight on both the photoionization and photodissociation mechanisms for the different dication states. 
    more » « less
  5. Abstract Phytoplankton and associated microbial communities provide organic carbon to oceanic food webs and drive ecosystem dynamics. However, capturing those dynamics is challenging. Here, an in situ, semi-Lagrangian, robotic sampler profiled pelagic microbes at 4 h intervals over ~2.6 days in North Pacific high-nutrient, low-chlorophyll waters. We report on the community structure and transcriptional dynamics of microbes in an operationally large size class (>5 μm) predominantly populated by dinoflagellates, ciliates, haptophytes, pelagophytes, diatoms, cyanobacteria (chiefly Synechococcus), prasinophytes (chiefly Ostreococcus), fungi, archaea, and proteobacteria. Apart from fungi and archaea, all groups exhibited 24-h periodicity in some transcripts, but larger portions of the transcriptome oscillated in phototrophs. Periodic photosynthesis-related transcripts exhibited a temporal cascade across the morning hours, conserved across diverse phototrophic lineages. Pronounced silica:nitrate drawdown, a high flavodoxin to ferredoxin transcript ratio, and elevated expression of other Fe-stress markers indicated Fe-limitation. Fe-stress markers peaked during a photoperiodically adaptive time window that could modulate phytoplankton response to seasonal Fe-limitation. Remarkably, we observed viruses that infect the majority of abundant taxa, often with total transcriptional activity synchronized with putative hosts. Taken together, these data reveal a microbial plankton community that is shaped by recycled production and tightly controlled by Fe-limitation and viral activity. 
    more » « less